Koushik Sen, Darko Marinov, Gul Agha
Department of Computer Science
University of lllinois at Urbana-Champaign

{ksen,marinov,agha}@cs.uiuc.edu

ABSTRACT

In unit testing, a program is decomposed into units which
are collections of functions. A part of unit can be tested
by generating inputs for a single entry function. The en-
try function may contain pointer arguments, in which case
the inputs to the unit are memory graphs. The paper ad-
dresses the problem of automating unit testing with mem-
ory graphs as inputs. The approach used builds on previous
work combining symbolic and concrete erecution, and more
specifically, using such a combination to generate test in-
puts to explore all feasible execution paths. The current
work develops a method to represent and track constraints
that capture the behavior of a symbolic execution of a unit
with memory graphs as inputs. Moreover, an efficient con-
straint solver is proposed to facilitate incremental generation
of such test inputs. Finally, CUTE, a tool implementing the
method is described together with the results of applying
CUTE to real-world examples of C code.

Categories and Subject Descriptors: D.2.5 [Software
Engincering]: Testing and Debugging

General Terms: Reliability, Verification

Keywords: concolic testing, random testing, explicit path
model-checking, data structure testing, unit testing, testing
C programs.

NTRODUCTION

Unit testing is a method for modular testing of a pro-
grams’ functional behavior. A program is decomposed into
its, where each unit is a collection of functions, and the

its are independently tested. Such testing requires speci-
fication of values for the inputs (or test inputs) to the unit.
Manual specification of such values is labor intensive and
cannot guarantee that all possible behaviors of the unit will
be observed during the testing.

In order to improve the range of behaviors observed (or
test coverage), several techniques have been proposed to au-
tomatically generate values for the inputs. One such tech-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

nique is to randomly choose the values over the domain of
potential inputs [4,8,10,21]. The problem with such random
testing is two fold: fir s of values may lead to the
same observable behavior and are thus redundant, and sec-
ond, the probability of selecting particular inputs that cause
buggy behavior may be astronomically small [20].

One approach which addresses the problem of redundant
executions and increases test coverage is symbolic execu-
tion [1,3,9,22,23,27,28,30]. In symbolic execution, a pro-
gram is ited using symbolic variables in place of con-
crete values for inputs. Each conditional expression in the
program represents a constraint that determines an ezecu-
tion path. Observe that the feasible executions of a program
can be repra where the branch points in a
program are internal nodes of the tree. The goal is to gen-
erate concrete values for inputs which would result in differ-
ent paths being taken. The classic approach is to use depth
first exploration of the paths by backtracking [14]. Unfor-
tunately, for large or complex units, it is computationally
intractable to precisely maintain and solve the constraints
required for test generation.

To the best of our knowledge, Larson and Austin were
the first to propose combining concrete and symbolic exe-
cution [16]. In their approach, the program is executed on
some user-provided concrete input values. Symbolic path
constraints are generated for the specific execution. These
constraints are solved, if feasible, to see whether there are
potential input values that would have led to a violation
along the same execution path. This improves coverage
while avoiding the computational cost associated with full-
blown symbolic execution which exercises all possible exe-
cution paths.

Godefroid et al. proposed incrementally generating test
inputs by combining concrete and symbolic execution [11].
In Godefroid et al.’s approach, during a concrete execution,
a conjunction of symbolic constraints along the path of the
execution is generated. These constraints are modified and
then solved, if feasible, to generate further test inputs which
would direct the program along alternative paths. Specifi-
cally, they systematically negate the conjuncts in the path
constraint to provide a depth first exploration of all paths
in the computation tree. If it is not feasible to solve the
modified constraints, Godefroid et al. propose simply sub-
stituting random concrete values.

A challenge in applying Godefroid et al.’s approach is to
provide methods which extract and solve the constraints
generated bv a program. This problem is varticularlv com-

, many s

CUTE: A Concolic Unit
Testing Engine for C
ACM SIGSOFT Impact
Award 2019

Koushik Sen, UC Berkeley
Darko Marinov, UIUC

Gul Agha, UIUC

Programs Have Bugs

-

&l
g

i
1|

Why Program Testing?

v Programmer
familiarity 4

v’ Concrete input
for debugging

il
I

v No false
positives

v’ Easy regression

i

Why Automated Testing?

-

K
27

Automated Testing Hits the Mainstream

NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION

+ABOUT NASA +LATEST NEWS +MULTIMEDIA +MISSIONS +WORK FOR NASA

+NASA Home. Symbolic Execution

+ Ames Home

+ Intelligent Systems
Division

+ Robust Software
Enginesring

Symbolic Exec

ion

+ Verification and Project Members

Validation The objective of the automated testing project is to perform Corina Pasareanu

automated generation of test inputs that obtain high coverage Peter Mehiitz.

. . for flexible (user-definable) coverage metrics and to check

Symbolic Execution properties of code during test case generation. past Members
To this end, we have developed tool, Symbolic JPF, that
combines symbolic execution with model checking and
constraint solving for test case generation. In this tool, programs
are executed on symbolic inputs representing multiple concrete
inputs. Values of variables are represented as numeric
constraints, generated from analysis of the code structure.
These constraints are then solved to generate test inputs Summer Interns
guaranteed to reach that part of code. Essentially Symbolic JPF

performs symbolic execution for Java programs at the bytecode ~ Mithun Acharya
level. Symbolic JPF uses the analysis engine of the Ames JPF ~ Suzette Person

model checking tool. Saswat Anand
Radek Pelanek

Sarfraz Khurshid

Willem Visser
Karen Gundy-Burlet
Hamed Jafari

David Bushnell

Symbolic JPF

« Performs symbolic execution of Java bytecodes Related Projects

Automated Testing Hits the Mainstream

NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION

+ABOUT NASA +LATEST NEWS +MULTIMEDIA +MISSIONS +WORK FOR NASA
- Symbolic Execution m Microsoft

+ Ames Home <
+ Intelligent Systems E \
Division :

+ Robust Software
Engineering

P Symbolic Execution ing / IntelliTest = / J)

Sign in
Validation

The objective of the automated testing project is to perform
automated generation of test inputs that obtain high coverage
for flexible (user-definable) coverage metrics and to check
properties of code during test case generation.

Symbolic Execution

To this end, we have developed tool, Symbolic JPF, that

G te unit tests for your
ccombines symbolic execution with model checking and ° .
constraint solving for test case generation. In this tool, program
s oxscutad on symoorc nputs wpresaning mupe conoae.— C QO C1 €@ W ntelii i es

inputs. Values of variables are represented as numeric
constraints, generated from analysis of the code structure.

These constraints are then solved to generate test inputs 10/04/2015 « 5 minutes to read « Contributors @ @ § & @ all
guaranteed to reach that part of code. Essentially Symbolic JP . .
performs symbolic execution for Java programs at the bytecod In this article

level. Symbolic JPF uses the analysis engine of the Ames JPF

model checking tool. Availability and extensions

Symbolic JPF Explore: Use IntelliTest to explore your code and generate unit tests

« Performs symbolic execution of Java bytecodes Persist: Save the unit tests as a regression suite
Assist: Use IntelliTest to focus code exploration

Specify: Use IntelliTest to validate correctness properties that you specify in code
Q&A

IntelliTest explores your .NET code to generate test data and a suite of unit
tests. For every statement in the code, a test input is generated that will
execute that statement. A case analysis is performed for every conditional

Automated Testing Hits the Mainstream

NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION

+ABOUT NASA +LATEST NEWS +MULTIMEDIA +MISSIONS

+ NASA Home Symbolic Execution m: Microsoft

+ Ames Home ' o

+ Intelligent Systems
Division

+ Robust Software
Enginesring . . L

PR Symbolic Execution ing / IntelliTest = / D Sign in
Validation The objective of the automated testing project is to perform

automated generation of test inputs that obtain high coverage

.) for flexible (user-definable) coverage metrics and to check

Symbolic Execution properties of code during test case generation.

Generate unit tests for your
(inteD Developer

Software ZONE

To this end, we have developed a tool, Symbolic JPF, that
‘combines symbolic execution with model checking and ° .
constraint solving for test case generation. In this tool, progran

s nosw o sy @ \With [ntelli
inputs. Values of variables are represented as numeric

constraints, generated from analysis of the code structure.

Search our content library... O, @ support & signinv @ English v

These constraints are then solved to generate test inputs 10/04/2015 + 5 minutes to read « Contributors @ =
M e = MEET THEEXPERTS <
performs symbolic execution for Java programs at the bytecod Documentation
level. Symbolic JPF uses the analysis engine of the Ames JPF _— .
model checking tool. Availability and extensions . . — . -
Symbollc JPF Explore: Use IntelliTest to explore your code and Flndlng BIOS Vulnerabilities with Symbollc
« Performs symbolic execution of Java bytecodes Persist: Save the unit tests as a regression suite Execution and VIrtual Platforms

Assist: Use IntelliTest to focus code exploration By Engblom, Jakob (Intel), published on June 6, 2017 | Translate >
Specify: Use IntelliTest to validate correctness prc

Q&A

IntelliTest explores your .NET code to gener:
tests. For every statement in the code, a test
execute that statement. A case analysis is pe

Finding vulnerabilities in code is part of the constant security game between attackers and defenders.
An attacker only needs to find one opening to be successful, while a defender needs to search for and

plug all or at least most of the holes in a system. Thus, a defender needs more effective tools than the
attacker to come out ahead.

Automated Testing Hits the Mainstream

NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION

+ABOUT NASA +LATEST NEWS +MULTIMEDIA +MISSIONS +WORK FOR NASA

+NASA Home
+Ames Home

Symbolic Execution m Microsoft

+ Intelligent Systems

Division
+ Robust Software

Enginesring . .
Symbolic Execution ing / IntelliTest

+ Verification and

Validation The objective of the automated testing project is to perform

automated generation of test inputs that obtain high coverage
for flexible (user-definable) coverage metrics and to check
properties of code during test case generation

Symbolic Execution

To this end, we have developed tool, Symbolic JPF, that
combines symbolic execution with model checking and
constraint solving for test case generation. In this tool, prograr
are executed on symbolic inputs representing muliple concretc
inputs. Values of variables are represented as numeric
constraints, generated from analysis of the code structure.
These constraints are then solved to generate test inputs
guaranteed to reach that part of code. Essentially Symbolic JP
performs symbolic execution for Java programs at the bytecod
level. Symbolic JPF uses the analysis engine of the Ames JPF
model checking tool.

code with Intelli

10/04/2015 « 5 minutes to read » Contributors .

In this article

Availability and extensions
Symbolic JPF Explore: Use IntelliTest to explore your code and
« Performs symbolic execution of Java bytecodes Persist: Save the unit tests as a regression suite
Assist: Use IntelliTest to focus code exploration
Specify: Use IntelliTest to validate correctness prc

Q&A

IntelliTest explores your .NET code to gener:
tests. For every statement in the code, a test
execute that statement. A case analysis is pe

Generate unit tests for your

= Va D Sign in

(inteD Developer

Software ZONE

MEET THE EXPERTS

Documentation

Search our content library... O, @ Support & Signinv

& English v

« Share

Finding BIOS Vulnerabilities with Symbolic
Execution and Virtual Platforms

By Engblom, Jakob (Intel), published on June 6, 2017 Translate >

Join us live at

InformationWeek interop
| e | peops | secwiy | cowd | pataa

IT LEADERSHIP // SECURITY & RISK STRATEGY

'Mayhem' System Wins DARPA's
Cyber Grand Challenge

Finding vulnerabilities in code is part of the constant seci
An attacker only needs to find one opening to be succes:
plug all or at least most of the holes in a system. Thus, a
attacker to come out ahead.

An automated system called "Mayhem" took home the top prize in the
Cyber Grand Challenge, sponsored by DARPA.

DARPA has named the presumptive winner of
its Cyber Grand Challenge (CGC), which
wrapped up Aug. 4 at the Paris Las Vegas
Conference Center.

Kelly Sheridan

A system called "Mayhem" was declared the
likely winner of the world's first all-hacking
competition, which is culminating a three-year
push by DARPA to drive innovation in cyber-
security.

7 Cool Data Center
Innovations

(Click image for larger view and
slideshow.)

Automated Test Generation Trend

* 1976: King’76, Clarke’76, Howden’77

e 2000: Java PathFinder

e 2001: Started my PhD UIUC

e 2001: SLAM/Blast: Automatic predicate abstraction
* 2001: Java PathExplorer: Runtime Verification

* 2003: Runtime monitoring with Eagle (Internship)
e 2003: Generalized Symbolic Execution

Automated Test Generation Trend

* 1976: King’76, Clarke’76, Howden’77

e 2000: Java PathFinder

e 2001: Started my PhD UIUC

e 2001: SLAM/Blast: Automatic predicate abstraction

* 2001: Java PathExplorer: Runtime Verification

* 2003: Runtime monitoring with Eagle (Internship)

e 2003: Generalized Symbolic Execution

e 2005: DART: Directed Automated Random Testing (Internship)
e 2005: CUTE: A Concolic Unit Testing Engine for C

e 2006: jCUTE: Concolic Testing for Multi-threaded programs

Symbolic JPF, KLEE, CREST, S2E, Angr, Veritesting, Mayhem, Triton, Jalangi, CATG

N

stackoverflow

PUBLIC
@ Stack Overflow
Tags
Users

Developer Jobs

TEAMS What's this?

3, Q&A for Work

Products

n concolic testing, what does “concrete execution” mean

Customers Use cases

| came across the terms "concrete & symbolic execution” when | was going through the concept of
concolic testing. (The article mentioned there, "CUTE: A concolic unit testing engine for C", uses that
term in its abstract section.)

"The approach used builds on previous work combining symbolic and concrete execution, and
more specifically, using such a combination to generate test inputs to explore all feasible execution
paths."

Can anyone please confirm what "concrete execution" means? In spite of my search, | could not find
any direct citations / explicit statements.

From what | have understood, "concrete execution" means "the execution of a program with actual
input values unlike symbolic execution, which assumes symbolic values to variables, inputs etc.". If |
am wrong, please correct me (if possible with a small example).

testing execution formal-verification

share improve this question edited Jan 24 '15 at 18:47 asked Jan 24 '15 at 18:16
i stakx E??.E Suhas Chikkanna

66.4k +16 ©139 9228 AT 370 ©2 6 022

2 Answers active oldest votes

14

Concolic execution is a mix between CONCrete execution and symbOLIC execution, with the
purpose of feasibility.

Symbolic execution allows us to execute a program through all possible execution paths, thus
achieving all possible path conditions (path condition = the set of logical constraints that takes us to a

Quora o

Quora uses cookies to improve your experience. Read more

Concolic Testing Automated Testing Software Testing

What is concolic testing?

1 Answer
(®\ Martin Gollogly, Develop Test Frameworks, Usually write and test code
‘;#, Answered Oct 26 2016 - Author has 205 answers and 418.5k answer views

Concolic is a portmanteau of CONCrete execution and symbOLIC execution. It’s also
known as Directed Automated Random Testing (DART). It’s a way to automatically and

systematically generate test inputs for programs.

A good definition can be found at Concolic testing - Wikipedia i which also has many
useful links for further reading

422 views - View 1 Upvoter

Related Questions

What is Concolic testing?

* Combine concrete execution and symbolic execution

Concrete + Symbolic = Concolic

12

Google

concolic Q

@ News [Videos [8 Maps i More

Q Al (] Images Settings Tools

About 172,000 results (0.34 seconds)

Concolic testing (a portmanteau of concrete and symbolic)

is a hybrid software verification technique that performs “ “’°°°’° N tooo0e
symbolic execution, a classical technique that treats (e R
program variables as symbolic variables, along a concrete . s
execution (testing on particular inputs) path. ¥ .

*=100000 +=100000
y=0 7=50001

Concolic testing - Wikipedia

https://en.wikipedia.org » wiki » Concolic_testing

@ About Featured Snippets 8 Feedback

Concolic testing - Wikipedia

https://en.wikipedia.org » wiki » Concolic_testing v

Concolic testing (a portmanteau of concrete and symbolic) is a hybrid software verification
technique that performs symbolic execution, a classical technique that treats program variables
as symbolic variables, along a concrete execution (testing on particular inputs) path.

Birth of concolic testing - Example - Algorithm - Commercial success

Concolic Fuzzing - Generating Software Tests - Fuzzing Book
https://www.fuzzingbook.org » html » ConcolicFuzzer v

The idea of concolic execution over a function is as follows: We start with a sample input for the
function, and execute the function under trace. At each point the ...

PPl Symbolic and Concolic Execution - Verimag

www-verimag.imag.fr » ~mounier » Enseignement » Software_Security v

Each theory comes with a set of axioms (FOL formulas), called A, which only contain elements
from the signature. The predicates and functions in have no ...

why on earth is concolic execution better? - Issue #907 - klee/kle...

Goal

e Automated Unit Testing of real-world C and Java
Programs
* Generate test inputs

e Execute unit under test on generated test inputs
e so that all reachable statements are executed

* Any assertion violation gets caught

14

Goal

e Automated Unit Testing of real-world C and Java
Programs
* Generate test inputs

e Execute unit under test on generated test inputs
e so that all reachable statements are executed

* Any assertion violation gets caught

* Concolic Testing Approach:

* Explore all execution paths of an unit for all possible
inputs

15

Computation Tree

e Can be seen as a binary tree
with possibly infinite depth
* Computation tree

* Each node represents the
execution of a “if then else”
statement

* Each edge represents the
execution of a sequence of
non-conditional statements

e Each path in the tree represents
an equivalence class of inputs

16

Concolic Testing Approach

int double (int v) {

return 2*v;

}

void testme (int x, inty) {

z = double (y);

if (z==x){

if (x > y+10) {

ERROR;
}

= Random Test Driver:
random values for x and y

= Probability of reaching
ERROR is extremely low

17

Concolic Testing Approach

| | Concrete Symbolic
int double (intv){ Execution Execution
return 2*v; concrete symbolic | path
} state state condition

void testme (int x, int y) {

W X=22,y=1 X = Xo, ¥ = Yo
if (z==x) {

if (x > y+10) {

ERROR;

18

Concolic Testing Approach

int double (int v) {

return 2*v;

}

void testme (int x, int y) {
z = double (y);
if (x >y+10) {

ERROR;

Concrete
Execution

concrete
state

symbolic
state

X = Xo, Y = Yo,
z=2%),

Symbolic
Execution

path
condition

19

Concolic Testing Approach

int double (int v) {

return 2*v;

}

void testme (int x, inty) {

z = double (y);
if (z==x){
if (x > y+10) {
ERROR;

}

I

Concrete Symbolic
Execution Execution
concrete symbolic | path
state state condition
2*y0 I= Xo
Xx=22,y=17, X = Xo, Y = Yo,
z=14 z = 2%y

20

Concolic Testing Approach

| | Concrete Symbolic

int double (intv){ Execution Execution
return 2*v; concrete symbolic | path

} state state condition

void testme (int x, inty) {
Solve: 2%y, == X,

2= double (y); Solution: X =2, yg = 1
if (2 == x) { 2%y0 1= X
if (x > y+10) {
ERROR;

}

}— X=22,y=7, X=X0,y=y0,

z=14 z=2%),

21

Concolic Testing Approach

| | Concrete Symbolic

int double (intv){ Execution Execution
return 2*v; concrete symbolic | path

} state state condition

void testme (int x, int y) {

W x=2,y=1 X = Xo, ¥ = Yo
flz==x)1

if (x > y+10) {

ERROR;

22

Concolic Testing Approach

int double (int v) {

return 2*v;

}

void testme (int x, int y) {
z = double (y);
if (x >y+10) {

ERROR;

Concrete
Execution

concrete
state

symbolic
state

X = Xo, Y = Yo,
z=2%),

Symbolic
Execution

path
condition

23

Concolic Testing Approach

int double (int v) {

return 2*v;

}

void testme (int x, inty) {
z = double (y);
if (z==x){

<_H'WUT{_

ERROR;

Concrete Symbolic
Execution Execution
concrete symbolic | path
state state condition
27Yo == Xo
x=2,y=1, X = Xo, Y = Yo,
zZ= z=2%),

24

Concolic Testing Approach

int double (int v) {

return 2*v;

}

void testme (int x, inty) {

z = double (y);
if (z==x){
if (x > y+10) {
ERROR;

}

} 4—

Concrete Symbolic
Execution Execution
concrete symbolic | path
state state condition
27Yo == Xo
Xg < y0+1 0
x=2,y=1, X = Xo, Y = Yo,
zZ= z=2%),

25

Concolic Testing Approach

| | Concrete Symbolic

int double (intv){ Execution Execution
return 2*v; concrete symbolic | path

} state state condition

void testme (int x, inty) {

Solve: (2*yg == Xg) A(Xo > Yo + 10)

2= double {y); Solution: Xo = 30, yo = 15
if (z == x) { 2*o == Xq
if (x > y+10) { %o> Yo+ 10
ERROR;

}_ X=2,y=1, X=X0,y=y0,
Z

= Z = 2*y0

26

Concolic Testing Approach

| | Concrete Symbolic

int double (intv){ Execution Execution
return 2*v; concrete symbolic | path

} state state condition

void testme (int x, int y) {

Z{W x=30,y=15 X =Xo, Y = Yo
flz==x)1

if (x > y+10) {

ERROR;

27

Concolic Testing Approach

int double (int v) {

return 2*v;

}

void testme (int x, inty) {

z = double (y);
if (z==x){
if (x > y+10) {

Concrete
Execution

x=30,y=15

Program Error

Symbolic
Execution
symbolic | path
state condition
20 == Xo
Xo > y0+1 0

X=Xo, Y =Yo

28

Explicit Path (not State) Model Checking

BTraverse all execution
paths one by one to detect
errors

dassertion violations
dprogram crash

duncaught exceptions
Bcombine with address

sanitizer to discover
memory errors

29

Explicit Path (not State) Model Checking

BTraverse all execution
paths one by one to detect
errors

dassertion violations
dprogram crash

duncaught exceptions
Bcombine with address

sanitizer to discover
memory errors

30

Explicit Path (not State) Model Checking

BTraverse all execution
paths one by one to detect
errors

dassertion violations
dprogram crash

duncaught exceptions
Bcombine with address

sanitizer to discover
memory errors

31

Explicit Path (not State) Model Checking

BTraverse all execution
paths one by one to detect
errors

dassertion violations
dprogram crash

duncaught exceptions
Bcombine with address

sanitizer to discover
memory errors

32

Explicit Path (not State) Model Checking

BTraverse all execution
paths one by one to detect
errors

dassertion violations
dprogram crash

duncaught exceptions
Bcombine with address

sanitizer to discover
memory errors

33

Explicit Path (not State) Model Checking

BTraverse all execution
paths one by one to detect
errors

dassertion violations
dprogram crash

duncaught exceptions
Bcombine with address

sanitizer to discover
memory errors

34

Novelty : Simultaneous Concrete and Symbolic Execution

| | Concrete Symbolic

int foo (int v){ Execution Execution
return (v*v) % 50; concrete symbolic | path

| state state condition

void testme (int x, inty) {
* X=22,y=7 X=X0,Y=YO
z X foo (y);
if (z==x){

if (x >y+10) {

ERROR;

35

Novelty : Simultaneous Concrete and Symbolic Execution

int foo (int v) {

return (v¥*v) % 50;

}

Concrete Symbolic

Execution Execution
concrete symbolic | path
state state condition

void testme (int x, inty) {

z = foo (y);

if (z==x){

Solve: (Yo*Yo)%50 == Xq

Don’ t know how to solve!

Stuck?

if (x > y+10) {
ERROR;

}

I

x=22,y=17,

X =Xo, Y = Yo,
Z = (Yo +Y0)%50

(Yo*Y0) %90 !=x,

36

Novelty : Simultaneous Concrete and Symbolic Execution

Concrete Symbolic
Execution Execution
concrete symbolic | path
state state condition
void testme (int x, inty) {
Solve: foo (yg) == Xg
z=foo (y); Don’ t know how to solve!
if (z == ?
if (z==x){ Stuck® 00 (yo) 1=,
if (x > y+10) {
ERROR;

}

I

x=22,y=17,

X = Xo, Y = Yo,
z = foo (yp)

37

Novelty : Simultaneous Concrete and Symbolic Execution

int foo (int v) {

return (v¥*v) % 50;

}

void testme (int x, inty) {

z =foo (y);

if (z==x){

if (x > y+10) {

ERROR;

}

I

Concrete Symbolic

Execution Execution
concrete symbolic | path
state state condition

Solve: (Yo*Yo)%50 == Xq
Don’ t know how to solve!
Not Stuck!

Use concrete state

Replace y, by 7 (sound)

X=22,y=1, X = Xo, Y = Yo,
z=49 Z= (Yo *yo)%50

(Yo*Y0) %90 !=x,

38

Novelty : Simultaneous Concrete and Symbolic Execution

| | Concrete Symbolic
int foo (int v) { Execution Execution
return (v*v) % 50; concrete symbolic | path
) state state condition
void testme (int x, inty) {
Solve: 49 == X,
z = foo (y); Solution : xo =49, yo =7
if (z==x) { 49 1=x,
if (x >y+10) {
ERROR;
}
}
}— X=22,y=7, X = Xo, Y = Yo,
Z = 48 Z = 49

39

Novelty : Simultaneous Concrete and Symbolic Execution

| | Concrete Symbolic

int foo (int v){ Execution Execution
return (v*v) % 50; concrete symbolic | path

} state state condition

void testme (int x, inty) {
* X=49,y=7 X=Xo,y=YO
z X foo (y);
if (z==x){
if (x >y+10) {

ERROR;

40

Novelty : Simultaneous Concrete and Symbolic Execution

Concrete Symbolic

int foo (int v) { Execution Execution

return (v*v) % 50;

}

symbolic | path
state condition

void testme (int x, int y) {
Program Error

z = foo (y);
if (2 == x) { 2%y == xq
if (x> y+10) { Xo> Yo+10
‘—m— Xx=49,y=7, X =Xo, Y =VYo,
} z=49 z=49

41

Summary: Pointers and Data-Structures

Logical Input Map to B Pointer Constraints
symbolically represent dp = NULL
Op = NULL

Memory Graph pointed by an =
input Pointer P#d
dp=g

M Solving Pointer Constraints
U Construct equivalence class [p] for each
pointer input p
Op = NULL

Add a node and point [p] to it
Op = NULL
236 next Delete node pointed by [p]
Up=q
Make [p] and [q] point to same node
Up=#qg
{O >1,1->236,2->1 } Add a node and point [p] or [q] to it

Concolic Testing: Finding Security and Safety Bugs

Divide by O Error Buffer Overflow

x=3/1i; ali] = 4;

43

Concolic Testing: Finding Security and Safety Bugs

Key: Add Checks Automatically and

Perform Concolic Testing

Divide by O Error Buffer Overflow

if (i 1=0) if (O<=i && i< a.length)
x=3/1i; ali] = 4;

else else

ERROR,; ERROR;

44

Incremental Constraint Solving

* Observation: one constraint is negated at each execution
* C1AC2A...ACkhas a satisfying assignment
* Needtosolve CLAC2A..A-Ck
* Previous solution more or less similar to current solution
* Eliminate non-dependent constraints

(x==1) A (y>2) A = (y==4)
to
(y>2) A - (y==4)
* Incremental Solving
* 100 -1000 times faster than a naive solver

Underlying Random Testing Helps

1 foobar(int x, int y){
if (x*x*x > 0){

if (x>0 && y==10){

10 }
11}

}

2
3

4

5

6 }else{
7 if (x>0 && y==20)
8

9

}

ERROR;

ERROR;

M static analysis based model-
checkers would consider both
branches

(J both ERROR statements are
reachable

U false alarm

M Symbolic execution

U gets stuck at line number 2

1 or warn that both ERRORs are
reachable

M CUTE finds the only error

46

DART, CUTE, JCUTE, CREST, Jalangi, CATG

O =

e DART for C

 CUTE for C and jCUTE for Java

e 5000+ downloads (around 2010)
* used in both academia and industry

* CREST

» extensible open-source tool for C

Concolic test generation tool for C

CREST is an automatic test generation tool for C.

CREST works by inserting instrumentation code (using GIL) into a target program to perform symbolic
execution concurrently with the concrete execution. The generated symbolic constraints are solved
(using Yices) to generate input that drive the test execution down new, unexplored program paths.

Dowroad
GREST currently only reasons symbolically about linear, integer arithmetic. CREST should be usable on D Aargz Fe
any modern Linux or Mac OS X system. For further building and usage information, see the README
file. You may also want to check out the FAQ.

crest is maintained by jburnim.

Further questions? Please e-mail the CREST-users mailing list (CREST-users at googlegroups.com,
at googl).

‘This page was generated by GitHub
Pages.

A short paper and technical report about the search strategies in CREST are available at the homepage
of Jacob Burnim.

News: CREST 0.1.2 is now available. It can be at https://s
Jreleases/tag/v0.1.2. This Is a bug fix release ~ several build issues are fixed, as well as a bug in
instrumenting unary expressions.

News: Heechul Yun has extended CREST to support non-linear arithmetic (using Z3). For more
see: and 3/blob
/master/README-23.

Publications

Many research groups have built on top of CREST. If you would like your paper added to the list below,
please contact jburnim@gmail.com.

. Qasis: Concolic Execution Driven by Test Suites and Code Modifications

Olivier Grameri, Rekha Bachwani, Tim Brecht, Ricardo Bianchini, Dejan Kostic, Willy Zwaenepoel
Ecole Polytechnique Fédérale de Lausanne (EPFL), Technical report LABOS-REPORT-2009-002, 2009

. Analysis and Detection of SQL Injection Vulnerabilities via Automatic Test Case Generation of Programs

M Ruse, T Sarkar, S Basu
IEEE/IPSJ International Symposium on Applications and the Internet (SAINT), 2010

e Jalangi for JavaScript Concolic Testing

* CATG for Concolic Testing of Java bytecode

e https://github.com/ksen007/janala2

47

https://github.com/ksen007/janala2

Concolic Testing in Practice

* Led to the development of several industrial and
academic automated testing and security tools

* Projects at Intel, Google, MathWorks, NTT, SalesForce
* PEX, SAGE, and YOGI at Microsoft
e Apollo at IBM, and Conbol and Jalangi at Samsung

BitBlaze, jFuzz, Oasis, and SmartFuzz in academia

Inlel Developer Search our content library.. OL @support & Sgninv @ English v
Software ZONE

Salesforce Engineering TECHNOLOGY ARCHITECTURE FILES OPEN SOURCE DEVOPS CULTURE SECURITY ‘ JOIN OURTE

3 MEET THE EXPERTS

Documentation

Finding BIOS Vulnerabilities with Symbolic Execution and Concolic Execution and Code Coverage
Virtual Platforms Wlth Triton

, published on June 6, 2017, updated June 7, 2019)
p p & Alberto Garcia lllera

‘““ Jan 10, 2018 - 8 min read

Fuzzing is a common technique used by hackers to find vulnerabilities,
where random inputs are sent to expose mistakes in code. However, with the
Iﬂa;%‘:: System Management source code and information about the software under attack, crashes and

bugs can be mapped back for easier fixing. Intel's Excite project uses a
combination of symbolic execution, fuzzing, and concrete testing find
Z)::::‘:&:"a'ym and Test vulnerabilities in sensitive code. Developers can use Simics* virtual

platforms to adopt best practices from the project to combine symbolic and
concrete techniques to achieve better performance and effectiveness than
using either technique alone.

CONTENTS

Applying Excite to SMM

How Excite Uses Simics Virtual
Platforms

Fuzzing
Code Coverage Results
How Issues Get Reported

Optimizing the Execution Time
with Parallel Testing

Try It

Related Content

48

Concolic Testing in Practice

* Led to the development of several industrial and
academic automated testing and security tools

* Projects at Intel, Google, MathWorks, NTT, SalesForce
* PEX, SAGE, and YOGI at Microsoft

* Apollo at IBM, and Conbol and Jalangi at Samsung

* BitBlaze, jFuzz, Oasis, and SmartFuzz in academia

B® Microsoft

ing / IntelliTest B 2 D sionin = Microsoft | Research Researchareas v Researchertools More + All Microsoft +

Generate unit tests for your
code with IntelliTest QSYM: A Practical Concolic Execution Engine

10/04/2015 « 5 minutes to read « Contributors @ @ § & @ all

i this arice Tailored for Hybrid Fuzzing

Availability and extensions
Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, Taesoo Kim

27th USENIX Security Symposium (Security 2018) | August 2018

Distinguished Paper Award Winner
Assist: Use IntelliTest to focus code exploration <4 Download BibTex

Explore: Use IntelliTest to explore your code and generate unit tests

Persist: Save the unit tests as a regression suite

Specify: Use IntelliTest to validate correctness properties that you specify in code
Q&A

IntelliTest explores your .NET code to generate test data and a suite of unit
tests. For every statement in the code, a test input is generated that will
execute that statement. A case analysis is performed for every conditional

Many Applications

dl'S TECHNICA

CLOUDY, WITH A CHANCE OF EXPLOITS —
Microsoft launches “fuzzing-as-a-service” to help
developers find security bugs

Project Springfield, Microsoft's "million-dollar bug detector"” now available in cloud.

SEAN GALLAGHER - 9/27/2016, 6:21 PM

Many Applications

I I N

CLOUDY, WITH A CHANCE OF EXPLOITS —

Microsoft launches “fuzzing-as-a-service” to help
developers find security bugs

Project Springfield, Microsoft's "million-dollar bug detector"” now available in cloud.

SEAN GALLAGHER - 9/27/2016, 6:21 PM

Performing Concolic
Execution on
Cryptographic Primitives

1 COMMENT

Alan Cao

For my winternship and springternship at Trail of Bits, I researched novel
techniques for symbolic execution on cryptographic protocols. I analyzed
various implementation-level bugs in cryptographic libraries, and built a
prototype Manticore-based concolic unit testing tool, Sandshrew, that
analyzed C cryptographic primitives under a symbolic and concrete
environment.

Many Applications

CLOUDY, WITH A CHANCE OF EXPLOITS —

Microsoft launches “fuzzing-as-a-service” to help
developers find security bugs

Project Springfield, Microsoft's "million-dollar bug detector"” now available in cloud.

SEAN GALLAGHER - 9/27/2016, 6:21 PM

Performing Concolic
Execution on
Cryptographic Primitives

1 COMMENT

Alan Cao

For my winternship and springternship at Trail of Bits, I researched novel
techniques for symbolic execution on cryptographic protocols. I analyzed
various implementation-level bugs in cryptographic libraries, and built a
prototype Manticore-based concolic unit testing tool, Sandshrew, that
analyzed C cryptographic primitives under a symbolic and concrete
environment.

Con2colic testing

Full Text: TIPDF - Get this Article

Authors: Azadeh Farzan University of Toronto, Canada

Andreas Holzer Vienna Urivareitu of Tachnalamv, Austria
. .) _Institutional Profile Page
Niloofar Razavi University ui 1orunw, canaua

Helmut Veith Vienna University of Technology, Austria

Published in:
- Proceeding
ESEC/FSE 2013 Proceedings of the 2013 9th Joint Meeting on F|
Pages 37-47

Publisher: IEEE

COMPI: Concolic Testing for MPI Applications

LY.L Hongbo Li ; Sihuan Li ; Zachary Benavides ; Zizhong Chen ; Rajiv Gupta View All Authors

Many Applications

I I N

CLOUDY, WITH A CHANCE OF EXPLOITS —

Microsoft launches “fuzzing-as-a-service” to help
developers find security bugs

Project Springfield, Microsoft's "million-dollar bug detector"” now available in cloud.

SEAN GALLAGHER - 9/27/2016, 6:21 PM

Performing Concolic
Execution on
Cryptographic Primitives

1 COMMENT

Alan Cao

For my winternship and springternship at Trail of Bits, I researched novel
techniques for symbolic execution on cryptographic protocols. I analyzed
various implementation-level bugs in cryptographic libraries, and built a
prototype Manticore-based concolic unit testing tool, Sandshrew, that
analyzed C cryptographic primitives under a symbolic and concrete
environment.

Con2colic testing

Full Text: TIPDF - Get this Article

Authors: Azadeh Farzan University of Toronto, Canada

DeepConcolic (Concolic Testing for Deep Neural Networks) Niloofar Razavl Universit"Sitional Profile Page

DeepConcolic

Safety for Al

Andreas Holzer Vienna Urivareitu of Tachnalany, Austria

Helmut Veith Vienna University of Technology, Austria

Published in:
- Proceeding
ESEC/FSE 2013 Proceedings of the 2013 9th Joint Meeting on F|
Pages 37-47

Publisher: IEEE

COMPI: Concolic Testing for MPI Applications

LY.L Hongbo Li ; Sihuan Li ; Zachary Benavides ; Zizhong Chen ; Rajiv Gupta View All Authors

Many Applications

I I N

CLOUDY, WITH A CHANCE OF EXPLOITS —

Microsoft launches “fuzzing-as-a-service” to help
developers find security bugs

Project Springfield, Microsoft's "million-dollar bug detector"” now available in cloud.

SEAN GALLAGHER - 9/27/2016, 6:21 PM

Performing Concolic
Execution on
Cryptographic Primitives

1 COMMENT

Alan Cao

For my winternship and springternship at Trail of Bits, I researched novel
techniques for symbolic execution on cryptographic protocols. I analyzed
various implementation-level bugs in cryptographic libraries, and built a
prototype Manticore-based concolic unit testing tool, Sandshrew, that
analyzed C cryptographic primitives under a symbolic and concrete
environment.

Con2colic testing

Full Text: TIPDF - Get this Article

Authors: Azadeh Farzan University of Toronto, Canada

DeepConcolic (Concolic Testing for Deep Neural Networks) Niloofar Razavl Universit"Sitional Profile Page

DeepConcolic

Safety for Al

Andreas Holzer Vienna Urivareitu of Tachnalany, Austria

Helmut Veith Vienna University of Technology, Austria

Published in:
- Proceeding
ESEC/FSE 2013 Proceedings of the 2013 9th Joint Meeting on F|
Pages 37-47

Publisher: IEEE

COMPI: Concolic Testing for MPI Applications

LY.L Hongbo Li ; Sihuan Li ; Zachary Benavides ; Zizhong Chen ; Rajiv Gupta View All Authors

Many Languages

THE

PROGRAMMING
LANGUAGE

Brian W.Kernighan ¢ Dennis M. Ritchie

JavaScript

A

python’

LLVM

Java bytecode

Concolic Testing: Path-explosion Problem

Entire Computation Tree }

56

Concolic Testing: Path-explosion Problem

Entire Computation Tree }

Explored by Concolic
Testing

57

Scaling Concolic Testing

e Control-flow Directed Search (CREST)

* Combining fuzzing and concolic testing (Hybrid Concolic Testing,
Driller, Mayhem)

e Function Summaries (SMART, Veritesting)

* Loop Summaries (Proteus, LESE)

e State Merging using Value Summaries (MultiSE)
* Interpolation (Tracer)

e Abstract Subsumption Checking

* Pruning redundant paths (RWSet)

 Parallel techniques (Siddiqui & Khurshid, and Staats & Pasareanu)
* Incremental techniques (Person et al.)

Lessons Learned

* Focused on an important real-world problem

* Did not try to invent from the beginning
* Tried existing approaches to solve a real problem
* Observed limitations
* Got insights = led to effective solutions
* |dentified novel contributions (and wrote papers)

Things We Should Have Done Differently

* If there is a big idea for a practical problem
 Build a practical system that users can use
* Promote the area of research
* Your competitors are your real-friends
Do not hesitate to use competing techniques
 If it helps to solve the problem

Take feedback seriously
* From actual users
 And reviewers

What we do now

* We target real-world problems

* We target real software in the more popular
languages
* rather than assuming a nice clean slate for research
* |leads us to see a lot of problems

* We build prototypes before building a large system

* We release our tools as open-source software
 so that the tools are usable by the broader community

e We release our benchmarks

Feedback-directed Fuzzing 101

Smart Fuzzing

‘ED

5 &
c o 2
S 5

@ Intention Algorithm Implementation
i |
COF".e Ic:tness Symbolic Execution/ Parallelization
2l e Concolic Testing CUTE
Performance Bugs LLVM. x86
PerfFuzz Genetic algorithm :
Custom testing Goals AFL Java Virtual Machine
FuzzFactory Reinforcement Learning JQF, RLCheck
. e Fuzsing (26t RLCheck Python
emantic ruzzing Neural Network RLCheck
7?7 :
Constraint Fuzzing : : RTL using FPGA
QuickSampler Bayesian Learning RFuzz (Laeufer)
SMTSampler (Dutra) 77

/est: Semantic Fuzzing

Padhye, Lemieux, Sen, Papadakis, Le Traon

public XMLElement genXML(Random random) {
// Generate a random tag name
String name = random.nextString(MAX_TAG_LENGTH);

XMLElement node = new XMLElement(name);

// Generate a random number of children
int n = random.nextInt(MAX_CHILDREN);
for (int i = 0; i < n; i++) {
// Generate child nodes recursively
node.addChild(genXML(random));
}

// Maybe insert text inside element
if (random.nextBoolean()) {
node.addText(random.nextString(MAX_TEXT_LENGTH));

}

return node;

* Developer writes a simple
input generator as a
program

* Generator restricts the
space of inputs

Example generated: &<foo><i>xyz</i><br/ ></foo>

Xyz

63

/est: New bugs discovered

v Google Closure Compiler: #2842, #2843, #3220, #3173

v OpenJDK: JDK-8190332, JDK-8190511, JDK-8190512, JDK-8190997, JDK-
8191023, JDK-8191076, JDK-8191109, JDK-8191174,JDK-8191073, JDK-
8193444, JDK-8193877, CVE-2018-3214

v Apache Commons: LANG-1385, COMPRESS-424, COLLECTIONS-714, CVE-2018-
11771

v Apache Ant: #62655

v’ Apache Maven: #34, #57

v Apache PDFBox: PDFBOX-4333, PDFBOX-4338, PDFBOX-4339, CVE-2018-8036
v Apache TIKA: CVE-2018-8017, CVE-2018-12418

v" Apache BCEL: BCEL-303, BCEL-307, BCEL-308, BCEL-309, BCEL-310, BCEL-
311, BCEL-312, BCEL-313

v' Motzilla Rhino: #405, #406, #407, #409, #410

64

https://github.com/google/closure-compiler/issues/2842
https://github.com/google/closure-compiler/issues/2843
https://github.com/google/closure-compiler/issues/3220
https://github.com/google/closure-compiler/issues/3173
https://bugs.openjdk.java.net/browse/JDK-8190332
https://bugs.openjdk.java.net/browse/JDK-8190511
https://bugs.openjdk.java.net/browse/JDK-8190512
https://bugs.openjdk.java.net/browse/JDK-8190997
https://bugs.openjdk.java.net/browse/JDK-8191023
https://bugs.openjdk.java.net/browse/JDK-8191076
https://bugs.openjdk.java.net/browse/JDK-8191109
https://bugs.openjdk.java.net/browse/JDK-8191174
https://bugs.openjdk.java.net/browse/JDK-8191073
https://bugs.openjdk.java.net/browse/JDK-8193444
https://bugs.openjdk.java.net/browse/JDK-8193877
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3214
https://issues.apache.org/jira/browse/LANG-1385
https://issues.apache.org/jira/browse/COMPRESS-424
https://issues.apache.org/jira/browse/COMPRESS-424
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-11771
https://bz.apache.org/bugzilla/show_bug.cgi?id=62655
https://github.com/codehaus-plexus/plexus-utils/issues/34
https://github.com/codehaus-plexus/plexus-utils/issues/57
https://issues.apache.org/jira/browse/PDFBOX-4333
https://issues.apache.org/jira/browse/PDFBOX-4338
https://issues.apache.org/jira/browse/PDFBOX-4339
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8036
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8017
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-12418
https://issues.apache.org/jira/browse/BCEL-303
https://issues.apache.org/jira/browse/BCEL-307
https://issues.apache.org/jira/browse/BCEL-308
https://issues.apache.org/jira/browse/BCEL-309
https://issues.apache.org/jira/browse/BCEL-310
https://issues.apache.org/jira/browse/BCEL-311
https://issues.apache.org/jira/browse/BCEL-312
https://issues.apache.org/jira/browse/BCEL-313
https://github.com/mozilla/rhino/issues/405
https://github.com/mozilla/rhino/issues/406
https://github.com/mozilla/rhino/issues/407
https://github.com/mozilla/rhino/issues/409
https://github.com/mozilla/rhino/issues/410

QuickSampler, SMTSampler, GuidedSampler
Human Writes a Pre-condition on Inputs

v'An over-approximation
of valid inputs

v'Restricts the set of
/ \ inputs to be generated

Goal: sample inputs from
the restricted input space

(node.left != NULL => node.val > node.left.val)
/\ (node.right '= NULL =>node.val <= node.right.val)

\ /

65

Generates more diverse set of solutions
compared to UniGen2 and SearchTreeSampler

o QuickSampler generates valid solutions
o 1 02'510'8 times faster than SearchTreeSampler

o 1 04'71“1 0 times faster than UniGen2
o QuickSampler generates unique valid solutions

o 1 02'310'7 times faster than SearchTreeSampler
o 104'411 3 times faster than UniGen2

66

Feedback-directed Fuzzing 101

Smart Fuzzing

‘ED

5 &
c o 2
S 5

@ Intention Algorithm Implementation
i |
COF".e Ic:tness Symbolic Execution/ Parallelization
2l e Concolic Testing CUTE
Performance Bugs LLVM. x86
PerfFuzz Genetic algorithm :
Custom testing Goals AFL Java Virtual Machine
FuzzFactory Reinforcement Learning JQF, RLCheck
. e Fuzsing (26t RLCheck Python
emantic ruzzing Neural Network RLCheck
7?7 :
Constraint Fuzzing : : RTL using FPGA
QuickSampler Bayesian Learning RFuzz (Laeufer)
SMTSampler (Dutra) 77

Koushik Sen, Darko Marinov, Gul Agha
Department of Computer Science
University of lllinois at Urbana-Champaign

{ksen,marinov,agha}@cs.uiuc.edu

ABSTRACT

In unit testing, a program is decomposed into units which
are collections of functions. A part of unit can be tested
a single entry function. The en-
in which case
The paper ad-

by generating inputs for
try function may contain pointer arguments
the inputs to the unit are memory graphs.
dresses the problem of antomating unit testing with mem-
ory graphs as inputs. The approach used builds on previous
work combining symbolic and concrete ezecution, and more
specifically, using such a combination to generate test in-
puts to explore all feasible execution paths. The current
work develops a method to represent and track constraints
that capture the behavior of a symbolic execution of a unit
with memory graphs as inputs. Moreover, an efficient con-
straint solver is proposed to facilitate incremental generation
of such test inputs. Finally, CUTE, a tool implementing the
method is described together with the results of applying
CUTE to real-world examples of C code.

Categories and Subject Descriptors: D.2.5 [Software
Engincering]: Testing and Debugging

General Terms: Reliability, Verification

Keywords: concolic testing, random testing, explicit path
model-checking, data structure testing, unit testing, testing
C programs.

NTRODUCTION

Unit testing is a method for modular testing of a pro-
grams’ functional behavior. A program is decomposed into
units, where each unit is a collection of functions, and th
units are independently tested. Such testing requires speci-
fication of values for the inputs (or test inputs) to the unit
Manual specification of such values is labor intensive and
cannot guarantee that all possible behaviors of the unit will
be observed during the testing.

In order to improve the range of behaviors observed (or
test coverage), several techniques have been proposed to au-
tomatically generate values for the inputs. One such tech-

1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

nique is to randomly choose the values over the domain of
potential inputs [4,8,10,21]. The problem with such random
testing is two fold: first, many scts of values may lead to the
same observable behavior and are thus redundant, and sec-
ond, the probability of selecting particular inputs that cause
buggy behavior may be astronomically small [:

One approach which addresses the problem of redundant
executions and incr test coverage is symbolic execu-
tion [1,3,9,22,23,27,28,30]. In symbolic execution, a pro-
gram is exccuted using symbolic variables in place of con-
crete values for inputs. Each conditional expression in the
program represents a constraint that determines an erecu-
tion path. Observe that the feasible executions of a program
can be represented as a tree, where the branch points in a
program are internal nodes of the tree. The goal is to gen-
erate concrete values for inputs which would result in differ-
ent paths being taken. The classic approach is to use depth
first exploration of the paths by backtracking [14]. Unfor-
tunately, for large or complex units, it is computationally
intractable to precisely maintain and solve the constraints

required for test generation.

To the best of our knowledge, Larson and Austin were
the first to propose combining concrete and symbolic exe-
cution [16]. In their approach, the program is executed on
some user-provided concrete input values. Symbolic path
constraints are generated for the specific execution. These
constraints are solved, if feasible, to see whether there are
potential input values that would have led to a violation
along the same execution path. This improves coverage
while avoiding the computational cost associated with full-
blown symbolic execution which exercises all possible exe-
cution paths.

Jodefroid et al. proposed incrementally generating test
inputs by combining concrete and symbolic execution [11]
In Godefroid et al.’s approach, during a concrete execution,
a conjunction of symbolic constraints along the path of the
execution is generated. These constraints are modified and
then solved, if feasible, to generate further test inputs which
would direct the program along alternative paths. Specifi-
cally, they systematically negate the conjuncts in the path
constraint to provide a depth first exploration of all paths
in the computation tree. If it is not feasible to solve the
modified constraints, Godefroid et al. propose simply sub-
stituting random concrete values.

A challenge in applying Godefroid et al.’s approach is to
provide methods which extract and solve the constraints
This oroblem is particularly com-

cenerated by a program

Thank you!

CUTE: A Concolic Unit

Testing Engine for C

ACM SIGSOFT Impact
Award 2019

Koushik Sen, UC Berkeley
Darko Marinov, UIUC
Gul Agha, UIUC

